29/09/2010				Solution
Operator Theory	-	MIDTERM Exam	-	Semester I

In the following the field of vector spaces and algebras is taken to be the field of complex numbers and σ denotes spectrum.

1. Obtain the spectral decomposition for following matrices, that is, write them as unitary conjugates of diagonal matrices and also write them as linear combination of projections.

$$M = \begin{bmatrix} 5 & 2\\ 2 & 5 \end{bmatrix}, N = \begin{bmatrix} 4 & 0 & 0\\ 0 & 2 & 2\\ 0 & 2 & 2 \end{bmatrix}$$

Solution: Let us assume that the matrix representation of M corresponds to the basis $\{e_1, e_2\}$. With respect to this basis, the basis vectors are represented as $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Now the given matrix M is self-adjoint and its eigenvalues will correspond to the roots of the equation

$$(5-\lambda)^2 - 4 = 0$$

It is easy to see that the roots are 3,7. Now corresponding to these eigenvalues, let us find out the respective eigen-vectors. If the eigen-vector for the eigenvalue 3 is written as $\begin{pmatrix} x \\ y \end{pmatrix}$ then we need to solve for the linear equations

$$5x + 2y = 3x$$
$$2x + 5y = 3y.$$

to get a representation of the eigen-vector with respect to the basis $\{e_1, e_2\}$ upto the constant $\lambda \in \mathbb{C}$. This then gives us the solution x = -y. Consider for example $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ as an eigen-vector. Similarly a typical element of the eigenspace for the eigen-value 7 would be $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The corresponding normalized eigen-vectors are going to be $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ Now we would like to solve for the basis change matrix from $\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ to $\{\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}\}^1$. If we write down this basis change matrix as $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$, we get that for the given representations the basis change matrix is $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$. Correspondingly the inverse matrix that would be the basis change matrix taking $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and

¹It is easy to see that this forms an orthonormal basis, directly from the fact that they are the normalized eigen-vectors corresponding to distinct eigen-values.

 $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \text{ to } \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ would be given as } \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \text{ Thus the representation of } M \text{ as a unitary }$

conjugate of a diagonal matrix would be $\begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$. Next we would like to break down M as a linear combination of projection matrices. Consider the eigenspaces of M corresponding to the eigen-vectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. These are the two one-dimensional invariant subspaces for the matrix M. We thereby see that M can be written as $M = 7P_1 + 3P_2$, where P_1 is the projection from \mathbb{C}^2 to the eigenspace of eigenvalue 7 and similarly P_2 is the projection onto the other eigenspace. Clearly if we choose the eigen-vectors of M in the above order as a basis for \mathbb{C}^2 , P_1 shall look like $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, while P_2 shall be $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Next we should conjugate the matrices above by the basis change matrices to arrive at the required projections with respect to the original basis for which M has the given particular representation.² This then gives us that

$$P_1 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Similarly we have the following representation for P_2 corresponding to the other eigenvalue

$$P_2 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Therefore we have the following representation of M as a linear combination of projections, namely

$$\begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix} = 7 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} + 3 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Next we do the same analysis for the other matrix N. Let us assume that the given matrix representation of N is with respect to the basis $\{e_1, e_2, e_3\}$ in \mathbb{C}^3 . First we find out the eigenvalues of N which are 0, 4 with the eigenspace of 4 having dimension 2. Solving for the normalized eigenvectors, we get the following orthonormal basis for

the eigenspace of 4, namely, $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix} \right\}$ and the one-dimensional eigenspace of 0 is

given by
$$\begin{pmatrix} 0\\ \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Now for this given orthonormal basis the matrix corresponding to the change of ba-

sis from
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
 to the above one $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \\\frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \\\frac{1}{\sqrt{2}} \end{pmatrix} \right\}$ is given by

²Note that the representation of the projection P_1 is independent of the choice of the eigen-vector from the eigenspace of the given eigenvalue.

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$ which is a unitary matrix with the same matrix as its adjoint. Thus the decomposition of N as a unitary conjugate of a diagonal matrix shall be given as

Γ4	0	[0	Γ1	0	ך 0	$\lceil 4 \rangle$	0	0] [1	0	ך 0
0	2	2 =	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	4	0 0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
0	2	2	0	$\frac{1}{\sqrt{2}}$	$\frac{-\overline{1}}{\sqrt{2}}$	0	0	0 0	$\frac{1}{\sqrt{2}}$	$\frac{-\overline{1}}{\sqrt{2}}$

Next we look at the decomposition of N as a linear combination of projections $N = 4P_1 + 0P_2$, since 4,0 are the two eigenvalues of N. Therefore $N = 4P_1$ which in the matrix representation becomes

4	0	0		[1	0	0
0	2	2	= 4	0	$\frac{1}{2}$	$\frac{1}{2}$
0	2	2		0	$\frac{1}{2}$	$\frac{1}{2}$
-		_		-	4	23

2. Let X, Y be Banach spaces. Show that K(X, Y), the space of all compact operators from X to Y is a closed subspace of the space B(X, Y) of all bounded operators from X to Y.

Solution: If $\{T_n\}_n$ is a Cauchy sequence of compact operators in K(X,Y) converging to the operator T in B(X,Y), it is enough to show that T is a compact operator. For Banach spaces, we know that an operator T is compact if the image of the unit ball under T has compact closure in the norm topology of the Banach space in the codomain. Now given $\epsilon > 0$, there exists $N \ge 1$ such that $||T - T_N|| \le \frac{\epsilon}{2}$. Now if S is the unit ball of X, T_N being a compact operator one can cover $T_N(S)$ by finitely many open balls of radius $\frac{\epsilon}{2}$. From $||T - T_N|| \le \frac{\epsilon}{2}$, keeping the same centres for the balls and increasing the radius of the balls by $\frac{\epsilon}{2}$, one can cover the set T(S). Hence T is a compact operator.

3. Let \mathcal{F} be the algebra of all matrices of the form:

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

with $a, b \in \mathbb{C}$. Show that \mathcal{F} with

$$\parallel \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \parallel = |a| + |b|$$

is a commutative Banach algebra (You must verify all the axioms). Compute the spectrum of this Banach algebra.

Solution: Clearly \mathcal{F} is a subspace in $M_2(\mathbb{C})$ and is also closed and commutative under the usual matrix multiplication, namely

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \begin{bmatrix} c & d \\ 0 & c \end{bmatrix} = \begin{bmatrix} c & d \\ 0 & c \end{bmatrix} \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} = \begin{bmatrix} ac & ad + bc \\ 0 & ac \end{bmatrix}$$

. We next show that it is closed with respect to the norm given above. Namely if $\left\{ \begin{bmatrix} a_n & b_n \\ 0 & a_n \end{bmatrix} \right\}_n$ is a Cauchy sequence of matrices in the given norm, we have that $\{|a_n| + |b_n|\}_n$ is a Cauchy sequence in \mathbb{C} . This would imply that both $\{a_n\}_n$, $\{b_n\}_n$ are Cauchy sequences in \mathbb{C} and hence converges to some a, b respectively in the complete space \mathbb{C} . Thus we get that the above sequence of matrices shall converge to $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$ and hence \mathcal{F} is a closed subspace of the Banach space $M_2(\mathbb{C})$ and is therefore a commutative Banach algebra.

We next try to compute the spectrum of \mathcal{F} , that is the collection of all multiplicative linear functionals on \mathcal{F} . Now \mathcal{F} is a 2-dimensional subspace of $M_2(\mathbb{C})$, spanned by the following basis

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Hence given a multiplicative linear functional $\phi: \mathcal{F} \to \mathbb{C}$, its enough to deduce its value on the above two matrices A, B. But $B^2 = 0$ and hence

$$\phi(B^2) = (\phi(B))^2 = 0.$$

This gives that $\phi(B) = 0$ for all multiplicative linear functionals on \mathcal{F} . Next, we see that $A^2 = A$, which implies $\phi(A)^2 = \phi(A)$ and therefore $\phi(A)[\phi(A) - 1] = 0$. This gives that $\phi(A) = 0$ or 1. Therefore the set of multiplicative linear functionals on \mathcal{F} consists of two elements, the zero functional and the other taking the value 1 on A and 0 on B. \Box

- 4. Let A be a unital Banach algebra. Consider a, b in A.
 - (a) Show that if (1-ba) is invertible then so is (1-ab). (Hint: If $c = (1-ba)^{-1}$, then $(1-ab)^{-1} = 1 + acb$).
 - (b) Show that $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$.

Solution:

(a) Given (1 - ba) is invertible, the inverse is given as a convergent power series

$$\frac{1}{(1-ba)} = 1 + ba + (ba)^2 + (ba)^3 + \ldots = c$$

Similarly the inverse of (1 - ab) will be given by the power series

$$\frac{1}{(1-ab)} = 1 + ab + (ab)^2 + (ab)^3 + \dots$$

It is then clear to see that

$$\frac{1}{(1-ab)} = 1 + acb$$

Given that (1 - ba) is invertible which in turn would mean that c is a convergent power series, we have that 1 + acb is a convergent power series and hence (1 - ab) is also invertible.

(b) From the above proof, note first that the converse also holds. Namely, if (1 - ab) is invertible then (1 - ba) should also be invertible. Now given $\lambda \neq 0$, we have $(\lambda - ab) = \lambda(1 - \frac{ab}{\lambda})$. Therefore from part (a), $(\lambda - ab)$ is invertible if and only if $(\lambda - ba)$ is invertible. Hence except for 0, we see that $\sigma(ab) \setminus 0 = \sigma(ba) \setminus 0$. Thus $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$.

5. Let $\mathcal{E} = C[0,1]$ be the Banach algebra of complex valued continuous functions on [0,1]. Let I be the ideal, $I = \{f : f \in \mathcal{E}, f(0) = f(1) = 0\}$. Show that the quotient space \mathcal{E}/I is isomorphic to \mathbb{C}^2 .

Solution: Consider the map $\Phi: \mathcal{E} \to \mathbb{C}^2$, given as $f \mapsto (f(0), f(1))$. Clearly this a linear map that also preserves the multiplicative structure. It is easy to see that the ideal I is the kernel of this map and the map is surjective. To see surjectivity of Φ , consider any element $(a, b) \in \mathbb{C}^2$. Then the function $g: [0, 1] \to \mathbb{C}$ given as g(t) = a(1-t) + bt is a continuous function such that g(0) = a and g(1) = b. Hence by the first isomorphism theorem, we have that the quotient space $\mathcal{E}/I \cong \mathbb{C}^2$.

6. Let \mathcal{A} be a unital commutative Banach algebra. Define the Gelfand map for \mathcal{A} and show that the Gelfand map is a contractive homomorphism

Solution: Let $\mathcal{M}(\mathcal{A})$ be the maximal ideal space for \mathcal{A} , that is the collection of all multiplicative linear functionals on \mathcal{A} . Then the Gelfand map is defined as $\Phi: \mathcal{A} \to C(\mathcal{M}(\mathcal{A}))$, which is given as $\Phi(a)(\psi) = \psi(a)$, for all $\psi \in \mathcal{M}(\mathcal{A})$. To see that it is a homomorphism, consider the product of any two elements $a, b \in \mathcal{A}$, then $\Phi(ab)(\psi) = \psi(ab) = \psi(a)\psi(b)$, for all multiplicative linear functionals ψ in $\mathcal{M}(\mathcal{A})$. Therefore $\Phi(ab) = \Phi(a)\Phi(b)$ for all $a, b \in \mathcal{M}(\mathcal{A})$ and hence the Gelfand map is a homomorphism. Now one needs to show that Φ is a contraction, that is, $\|\Phi(a)\| \leq \|a\|, \forall a \in \mathcal{A}$. Now $\|\Phi(a)\| = \sup_{\psi \in \mathcal{M}(\mathcal{A})} |\psi(a)|$. But the set $\{\psi(a) : \forall \psi \in \mathcal{M}(\mathcal{A})\}$ is contained in the spectrum $\sigma(a)$ of the element a. Hence $\|\Phi(a)\| \leq spr(a)$, where spr(a) is the spectral radius of a. And we know that $spr(a) \leq \|a\|$ for all a in \mathcal{A} . Hence $\|\Phi(a)\| \leq \|a\|$ for all a in \mathcal{A} . Therefore the Gelfand map Φ is a contractive homomorphism.

7. Consider the set up of question 4. Suppose $\lambda \cdot 1 = ab - ba$, where λ is a scalar, show that $\lambda = 0$. (Hint: If $\lambda \neq 0$, arrive at a contradiction with 4(b) by considering $\sigma(ab)$ and $\sigma(ba)$.)

Solution: Suppose $\lambda \neq 0$. This would mean that $ba = ab - \lambda \cdot 1$. But then we have that $\sigma(ba) = \sigma(ab) + \lambda$, where the addition operation is with respect to that in \mathbb{C} . But this contradicts the statement of question 4(b) that $\sigma(ab) = \sigma(ba)$, hence $\lambda = 0$.