29/09/2010 Solution
Operator Theory - MIDTERM Exam - Semester I

In the following the field of vector spaces and algebras is taken to be the field of complex numbers and
o denotes spectrum.

1. Obtain the spectral decomposition for following matrices, that is, write them as unitary conjugates
of diagonal matrices and also write them as linear combination of projections.

40 0
M:B?}N:OQ 2
0 2 2

Solution: Let us assume that the matrix representation of M corresponds to the basis

0 1
the given matrix M is self-adjoint and its eigenvalues will correspond to the roots of
the equation

. . . . 1
{e1,e2}. With respect to this basis, the basis vectors are represented as ( ), (0) Now

(5-A2—4=0

It is easy to see that the roots are 3,7. Now corresponding to these eigenvalues, let us
find out the respective eigen-vectors. If the eigen-vector for the eigenvalue 3 is written

as (z) then we need to solve for the linear equations

5 + 2y = 3z
2z 4 5y = 3y.

to get a representation of the eigen-vector with respect to the basis {e;,e2} upto the
constant A € C. This then gives us the solution z = —y. Consider for example _11)

as an eigen-vector. Similarly a typical element of the eigenspace for the eigen-value

1
7 would be G) The corresponding normalized eigen-vectors are going to be <*/?>
V2

1

and (‘@)Now we would like to solve for the basis change matrix from {<(1)>7 <?)}

V2

1 1
to { \{i , f? 1. If we write down this basis change matrix as vy , we get that
) \vz v

1

1
for the given representations the basis change matrix is [\@ g . Correspondingly

V2 V2

1
the inverse matrix that would be the basis change matrix taking <\{§> to <(1)) and
V2

11t is easy to see that this forms an orthonormal basis, directly from the fact that they are the normalized eigen-vectors
corresponding to distinct eigen-values.



1 1 1
(@) to (?) would be given as [\{5 @ Thus the representation of M as a unitary

V2 V2 2
conjugate of a diagonal matrix would be {2 5}: ‘@ \_/? {O 3} \{i \_/% .
V2o V2 V2 V2
Next we would like to break down M as a linear combination of projection matrices.
Consider the eigenspaces of M corresponding to the eigen-vectors 1 y _11 . These

are the two one-dimensional invariant subspaces for the matrix M. We thereby see
that M can be written as M = 7P, + 3P,, where P; is the projection from C? to the
eigenspace of eigenvalue 7 and similarly P, is the projection onto the other eigenspace.
Clearly if we choose the eigen-vectors of M in the above order as a basis for C?, P;
shall look like (1) 8] , while P, shall be {8 ﬂ . Next we should conjugate the matrices
above by the basis change matrices to arrive at the required projections with respect
to the original basis for which M has the given particular representation.? This then

gives us that
aflo ol -1 ]
P, = =
= Al ol A=

Similarly we have the following representation for P, corresponding to the other eigen-

value R

Therefore we have the following representation of M as a linear combination of pro-

jections, namely
I
=T7|7 1|+3|2 7
{2 5 3 2 5 3

Next we do the same analysis for the other matrix N. Let us assume that the given
matrix representation of N is with respect to the basis {e;,¢es,e3} in C3. First we find
out the eigenvalues of N which are 0,4 with the eigenspace of 4 having dimension 2.
Solving for the normalized eigenvectors, we get the following orthonormal basis for

I ol

=

o
M‘ll\b\»—\
=

1 0
the eigenspace of 4, namely, { [ 0|, % } and the one-dimensional eigenspace of 0 is
1
0/ \7
0
given by %
-1
=
Now for this given orthonormal basis the matrix corresponding to the change of ba-
1 0 0 1 (1) (1)
sis from { (0|, (1|, [O|} to the above one { (O], | 5|, | 75| } is given by
1 1
0 0 1 0 7 7

2Note that the representation of the projection Pj is independent of the choice of the eigen-vector from the eigenspace
of the given eigenvalue.
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decomposition of N as a unitary conjugate of a diagonal matrix shall be given as

which is a unitary matrix with the same matrix as its adjoint. Thus the

oo
Sl

4 0 0 1 0 07 T4 o ol O O
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1 =1 1T =1
02 2] 0 5 110000 5 37

Next we look at the decomposition of N as a linear combination of projections N =
4P, + 0P,, since 4,0 are the two eigenvalues of N. Therefore N = 4P, which in the
matrix representation becomes

O O =
NN O
NN O
I
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. Let X, Y be Banach spaces. Show that K(X,Y), the space of all compact operators from X toY is
a closed subspace of the space B(X,Y) of all bounded operators from X to Y.

Solution: If {T,}, is a Cauchy sequence of compact operators in K(X,Y) converging
to the operator T in B(X,Y), it is enough to show that T is a compact operator. For
Banach spaces, we know that an operator T is compact if the image of the unit ball
under T has compact closure in the norm topology of the Banach space in the co-
domain. Now given ¢ > 0, there exists N > 1 such that |T — Ty| < §. Now if S is

the unit ball of X, Ty being a compact operator one can cover Tx(S) by finitely many

open balls of radius §. From [T — Ty| < §, keeping the same centres for the balls

and increasing the radius of the balls by £, one can cover the set 7'(S). Hence T is a
compact operator. O

. Let F be the algebra of all matrices of the form:
a b
0 a

a b
o o] i=tal-+

with a,b € C. Show that F with

is a commutative Banach algebra (You must verify all the azioms). Compute the spectrum of this
Banach algebra.

Solution: Clearly F is a subspace in M;(C) and is also closed and commutative under
the usual matrix multiplication, namely

bl 9 9 2



We next show that it is closed with respect to the norm given above. Namely

b

if {{aon aﬂ }n is a Cauchy sequence of matrices in the given norm, we have that

{lan| + |bn|}n is a Cauchy sequence in C. This would imply that both {a,},, {b,}, are
Cauchy sequences in C and hence converges to some a,b respectively in the complete

space C. Thus we get that the above sequence of matrices shall converge to [8 2] and

hence F is a closed subspace of the Banach space M>(C) and is therefore a commutative
Banach algebra.

We next try to compute the spectrum of F, that is the collection of all multiplicative
linear functionals on F. Now F is a 2-dimensional subspace of M;(C), spanned by the

following basis
1 0 0 1
A_{O 1}’B_[O 0}'

Hence given a multiplicative linear functional ¢: F — C, its enough to deduce its value
on the above two matrices A, B. But B? = 0 and hence

¢(B?) = (¢(B))* = 0.

This gives that ¢(B) = 0 for all multiplicative linear functionals on F. Next, we see
that A? = A, which implies ¢(A)?> = ¢(A) and therefore ¢(A)[¢p(A) — 1] = 0. This gives
that ¢(A) =0 or 1. Therefore the set of multiplicative linear functionals on F consists
of two elements, the zero functional and the other taking the value 1 on A and 0 on B.
|

. Let A be a unital Banach algebra. Consider a,b in A.

(a) Show that if (1—ba) is invertible then so is (1—ab). (Hint: If c = (1—ba)~!, then (1—ab)~! =
1+ ach).

(b) Show that o(ab) U {0} = o(ba) U {0}.

Solution:
(a) Given (1 —ba) is invertible, the inverse is given as a convergent power series
ﬁzl—}—ba—i—(ba)?—&—(ba):;—i—...:c
Similarly the inverse of (1 — ab) will be given by the power series
ﬁ =1+ ab+ (ab)? + (ab)® + ...
It is then clear to see that
1 —
m =1 + acb

Given that (1 — ba) is invertible which in turn would mean that c is a convergent
power series, we have that 1+ acb is a convergent power series and hence (1 — ab)
is also invertible.



(b) From the above proof, note first that the converse also holds. Namely, if (1 — ab)
is invertible then (1 — ba) should also be invertible. Now given A # 0, we have
(A —ab) = A(1 — %), Therefore from part (a), (A — ab) is invertible if and only if
(A — ba) is invertible. Hence except for 0, we see that o(ab) \ 0 = o(ba) \ 0. Thus
o(ab) U {0} = o(ba) U {0}.

]

. Let £ = C]0,1] be the Banach algebra of complex valued continuous functions on [0,1]. Let I be the
ideal, I = {f : f € &€, f(0) = f(1) = 0}. Show that the quotient space /I is isomorphic to C?.

Solution: Consider the map ®: £ — C?, given as f — (f(0), f(1)). Clearly this a linear
map that also preserves the multiplicative structure. It is easy to see that the ideal I
is the kernel of this map and the map is surjective. To see surjectivity of ¢, consider
any element (a,b) € C2. Then the function g: [0,1] — C given as g(t) = a(l —t) + bt is a
continuous function such that ¢(0) = a and g(1) = b. Hence by the first isomorphism
theorem, we have that the quotient space £/I = C2. (]

. Let A be a unital commutative Banach algebra. Define the Gelfand map for A and show that the
Gelfand map is a contractive homomorphism

Solution: Let M(A) be the maximal ideal space for A, that is the collection of all
multiplicative linear functionals on A. Then the Gelfand map is defined as ¢: A —
C(M(A)), which is given as ®(a)(yp) = ¢(a), for all ¢y € M(A). To see that it is a
homomorphism, consider the product of any two elements a,b € A, then ®(ab)(v)) =
Y(ab) = ¥ (a)(b), for all multiplicative linear functionals ¢ in M(A). Therefore ®(ab) =
®(a)®(b) for all a,b € M(A) and hence the Gelfand map is a homomorphism. Now one
needs to show that ® is a contraction, that is, |®(a)|| < |a||,Va € A. Now ||®(a)| =
SUPyepm(a) [¥(a)|. But the set {1(a) : Vi) € M(A)} is contained in the spectrum o(a) of
the element a. Hence ||®(a)|| < spr(a), where spr(a) is the spectral radius of a. And we
know that spr(a) < |la|| for all ¢ in A. Hence ||®(a)| < ||a|| for all a in A. Therefore the
Gelfand map P is a contractive homomorphism. O

. Consider the set up of question 4. Suppose X -1 = ab— ba, where X is a scalar, show that A =0. (
Hint: If A # 0, arrive at a contradiction with 4(b) by considering o(ab) and o(ba).)

Solution: Suppose \ # 0. This would mean that ba = ab — A - 1. But then we have that
o(ba) = o(ab) + A, where the addition operation is with respect to that in C. But this
contradicts the statement of question 4(b) that o(ab) = o(ba), hence A = 0.



