
29/09/2010 Solution
Operator Theory - MIDTERM Exam - Semester I

In the following the field of vector spaces and algebras is taken to be the field of complex numbers and
σ denotes spectrum.

1. Obtain the spectral decomposition for following matrices, that is, write them as unitary conjugates
of diagonal matrices and also write them as linear combination of projections.

M =

[
5 2
2 5

]
, N =

4 0 0
0 2 2
0 2 2


Solution: Let us assume that the matrix representation of M corresponds to the basis

{e1, e2}. With respect to this basis, the basis vectors are represented as

(
1
0

)
,

(
0
1

)
. Now

the given matrix M is self-adjoint and its eigenvalues will correspond to the roots of
the equation

(5− λ)2 − 4 = 0

It is easy to see that the roots are 3, 7. Now corresponding to these eigenvalues, let us
find out the respective eigen-vectors. If the eigen-vector for the eigenvalue 3 is written

as

(
x
y

)
then we need to solve for the linear equations

5x+ 2y = 3x
2x+ 5y = 3y.

to get a representation of the eigen-vector with respect to the basis {e1, e2} upto the

constant λ ∈ C. This then gives us the solution x = −y. Consider for example

(
1
−1

)
as an eigen-vector. Similarly a typical element of the eigenspace for the eigen-value

7 would be

(
1
1

)
. The corresponding normalized eigen-vectors are going to be

(
1√
2
−1√
2

)

and

(
1√
2
1√
2

)
Now we would like to solve for the basis change matrix from {

(
1
0

)
,

(
0
1

)
}

to {

(
1√
2
1√
2

)
,

(
1√
2
−1√
2

)
}1. If we write down this basis change matrix as

[
x y
z w

]
, we get that

for the given representations the basis change matrix is

[
1√
2

1√
2

1√
2

−1√
2

]
. Correspondingly

the inverse matrix that would be the basis change matrix taking

(
1√
2
1√
2

)
to

(
1
0

)
and

1It is easy to see that this forms an orthonormal basis, directly from the fact that they are the normalized eigen-vectors
corresponding to distinct eigen-values.
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(
1√
2
−1√
2

)
to

(
0
1

)
would be given as

[
1√
2

1√
2

1√
2

−1√
2

]
Thus the representation of M as a unitary

conjugate of a diagonal matrix would be

[
5 2
2 5

]
=

[
1√
2

1√
2

1√
2

−1√
2

] [
7 0
0 3

][ 1√
2

1√
2

1√
2

−1√
2

]
.

Next we would like to break down M as a linear combination of projection matrices.

Consider the eigenspaces of M corresponding to the eigen-vectors

(
1
1

)
,

(
1
−1

)
. These

are the two one-dimensional invariant subspaces for the matrix M . We thereby see
that M can be written as M = 7P1 + 3P2, where P1 is the projection from C2 to the
eigenspace of eigenvalue 7 and similarly P2 is the projection onto the other eigenspace.
Clearly if we choose the eigen-vectors of M in the above order as a basis for C2, P1

shall look like

[
1 0
0 0

]
, while P2 shall be

[
0 0
0 1

]
. Next we should conjugate the matrices

above by the basis change matrices to arrive at the required projections with respect
to the original basis for which M has the given particular representation.2 This then
gives us that

P1 =

[
1
2

1
2

1
2

−1
2

][
1 0
0 0

][
1 1
1 −1

]
=

[
1
2

1
2

1
2

1
2

]
Similarly we have the following representation for P2 corresponding to the other eigen-
value

P2 =

[
1
2

1
2

1
2

−1
2

][
0 0
0 1

][
1 1
1 −1

]
=

[
1
2

−1
2−1

2
1
2

]
Therefore we have the following representation of M as a linear combination of pro-
jections, namely [

5 2
2 5

]
= 7

[
1
2

1
2

1
2

1
2

]
+3

[
1
2

−1
2−1

2
1
2

]
Next we do the same analysis for the other matrix N . Let us assume that the given
matrix representation of N is with respect to the basis {e1, e2, e3} in C3. First we find
out the eigenvalues of N which are 0, 4 with the eigenspace of 4 having dimension 2.
Solving for the normalized eigenvectors, we get the following orthonormal basis for

the eigenspace of 4, namely, {

1
0
0

,

 0
1√
2
1√
2

} and the one-dimensional eigenspace of 0 is

given by

 0
1√
2
−1√
2

.

Now for this given orthonormal basis the matrix corresponding to the change of ba-

sis from {

1
0
0

,

0
1
0

,

0
0
1

} to the above one {

1
0
0

,

 0
1√
2
1√
2

,

 0
1√
2
−1√
2

 } is given by

2Note that the representation of the projection P1 is independent of the choice of the eigen-vector from the eigenspace
of the given eigenvalue.
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1 0 0
0 1√

2
1√
2

0 1√
2

−1√
2

 which is a unitary matrix with the same matrix as its adjoint. Thus the

decomposition of N as a unitary conjugate of a diagonal matrix shall be given as4 0 0
0 2 2
0 2 2

=

1 0 0
0 1√

2
1√
2

0 1√
2

−1√
2

 4 0 0
0 4 0
0 0 0

1 0 0
0 1√

2
1√
2

0 1√
2

−1√
2


Next we look at the decomposition of N as a linear combination of projections N =
4P1 + 0P2, since 4, 0 are the two eigenvalues of N . Therefore N = 4P1 which in the
matrix representation becomes4 0 0

0 2 2
0 2 2

= 4

1 0 0
0 1

2
1
2

0 1
2

1
2


�

2. Let X,Y be Banach spaces. Show that K(X,Y ), the space of all compact operators from X to Y is
a closed subspace of the space B(X,Y ) of all bounded operators from X to Y .

Solution: If {Tn}n is a Cauchy sequence of compact operators in K(X,Y ) converging
to the operator T in B(X,Y ), it is enough to show that T is a compact operator. For
Banach spaces, we know that an operator T is compact if the image of the unit ball
under T has compact closure in the norm topology of the Banach space in the co-
domain. Now given ε > 0, there exists N ≥ 1 such that ‖T − TN‖ ≤ ε

2 . Now if S is
the unit ball of X, TN being a compact operator one can cover TN (S) by finitely many
open balls of radius ε

2 . From ‖T − TN‖ ≤ ε
2 , keeping the same centres for the balls

and increasing the radius of the balls by ε
2 , one can cover the set T (S). Hence T is a

compact operator. �

3. Let F be the algebra of all matrices of the form:[
a b
0 a

]
with a, b ∈ C. Show that F with

‖
[
a b
0 a

]
‖ = |a|+ |b|

is a commutative Banach algebra (You must verify all the axioms). Compute the spectrum of this
Banach algebra.

Solution: Clearly F is a subspace in M2(C) and is also closed and commutative under
the usual matrix multiplication, namely[

a b
0 a

][
c d
0 c

]
=

[
c d
0 c

][
a b
0 a

]
=

[
ac ad+ bc
0 ac

]

3



. We next show that it is closed with respect to the norm given above. Namely

if {
[
an bn
0 an

]
}n is a Cauchy sequence of matrices in the given norm, we have that

{|an| + |bn|}n is a Cauchy sequence in C. This would imply that both {an}n, {bn}n are
Cauchy sequences in C and hence converges to some a, b respectively in the complete

space C. Thus we get that the above sequence of matrices shall converge to

[
a b
0 a

]
and

hence F is a closed subspace of the Banach space M2(C) and is therefore a commutative
Banach algebra.

We next try to compute the spectrum of F , that is the collection of all multiplicative
linear functionals on F . Now F is a 2-dimensional subspace of M2(C), spanned by the
following basis

A =

[
1 0
0 1

]
, B =

[
0 1
0 0

]
.

Hence given a multiplicative linear functional φ : F → C, its enough to deduce its value
on the above two matrices A,B. But B2 = 0 and hence

φ(B2) = (φ(B))2 = 0.

This gives that φ(B) = 0 for all multiplicative linear functionals on F . Next, we see
that A2 = A, which implies φ(A)2 = φ(A) and therefore φ(A)[φ(A) − 1] = 0. This gives
that φ(A) = 0 or 1. Therefore the set of multiplicative linear functionals on F consists
of two elements, the zero functional and the other taking the value 1 on A and 0 on B.
�

4. Let A be a unital Banach algebra. Consider a, b in A.

(a) Show that if (1−ba) is invertible then so is (1−ab). (Hint: If c = (1−ba)−1, then (1−ab)−1 =
1 + acb).

(b) Show that σ(ab) ∪ {0} = σ(ba) ∪ {0}.

Solution:

(a) Given (1− ba) is invertible, the inverse is given as a convergent power series

1
(1−ba) = 1 + ba+ (ba)2 + (ba)3 + . . . = c

Similarly the inverse of (1− ab) will be given by the power series

1
(1−ab) = 1 + ab+ (ab)2 + (ab)3 + . . .

It is then clear to see that

1
(1−ab) = 1 + acb

Given that (1 − ba) is invertible which in turn would mean that c is a convergent
power series, we have that 1 + acb is a convergent power series and hence (1 − ab)
is also invertible.
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(b) From the above proof, note first that the converse also holds. Namely, if (1 − ab)
is invertible then (1 − ba) should also be invertible. Now given λ 6= 0, we have
(λ − ab) = λ(1 − ab

λ ). Therefore from part (a), (λ − ab) is invertible if and only if
(λ − ba) is invertible. Hence except for 0, we see that σ(ab) \ 0 = σ(ba) \ 0. Thus
σ(ab) ∪ {0} = σ(ba) ∪ {0}.

�

5. Let E = C[0, 1] be the Banach algebra of complex valued continuous functions on [0, 1]. Let I be the
ideal, I = {f : f ∈ E , f(0) = f(1) = 0}. Show that the quotient space E/I is isomorphic to C2.

Solution: Consider the map Φ: E → C2, given as f 7→ (f(0), f(1)). Clearly this a linear
map that also preserves the multiplicative structure. It is easy to see that the ideal I
is the kernel of this map and the map is surjective. To see surjectivity of Φ, consider
any element (a, b) ∈ C2. Then the function g : [0, 1] → C given as g(t) = a(1 − t) + bt is a
continuous function such that g(0) = a and g(1) = b. Hence by the first isomorphism
theorem, we have that the quotient space E/I ∼= C2. �

6. Let A be a unital commutative Banach algebra. Define the Gelfand map for A and show that the
Gelfand map is a contractive homomorphism

Solution: Let M(A) be the maximal ideal space for A, that is the collection of all
multiplicative linear functionals on A. Then the Gelfand map is defined as Φ: A →
C(M(A)), which is given as Φ(a)(ψ) = ψ(a), for all ψ ∈ M(A). To see that it is a
homomorphism, consider the product of any two elements a, b ∈ A, then Φ(ab)(ψ) =
ψ(ab) = ψ(a)ψ(b), for all multiplicative linear functionals ψ in M(A). Therefore Φ(ab) =
Φ(a)Φ(b) for all a, b ∈ M(A) and hence the Gelfand map is a homomorphism. Now one
needs to show that Φ is a contraction, that is, ‖Φ(a)‖ ≤ ‖a‖,∀a ∈ A. Now ‖Φ(a)‖ =
supψ∈M(A) |ψ(a)|. But the set {ψ(a) : ∀ψ ∈ M(A)} is contained in the spectrum σ(a) of
the element a. Hence ‖Φ(a)‖ ≤ spr(a), where spr(a) is the spectral radius of a. And we
know that spr(a) ≤ ‖a‖ for all a in A. Hence ‖Φ(a)‖ ≤ ‖a‖ for all a in A. Therefore the
Gelfand map Φ is a contractive homomorphism. �

7. Consider the set up of question 4. Suppose λ · 1 = ab− ba, where λ is a scalar, show that λ = 0. (
Hint: If λ 6= 0, arrive at a contradiction with 4(b) by considering σ(ab) and σ(ba).)

Solution: Suppose λ 6= 0. This would mean that ba = ab− λ · 1. But then we have that
σ(ba) = σ(ab) + λ, where the addition operation is with respect to that in C. But this
contradicts the statement of question 4(b) that σ(ab) = σ(ba), hence λ = 0.
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